This FAQ is about incremental sum of squares ("change in sum of squares"), analysis of variance, and partial F tests. It explains a "shorthand" notation for variance explained in model building.

Illustration

An educator examined the relationship between number of hours devoted to reading each week (Y) and the independent variables social class $\left(\mathrm{X}_{1}\right)$, number of years school completed $\left(\mathrm{X}_{2}\right)$, and reading speed measured by pages read per hour $\left(\mathrm{X}_{3}\right)$. The analysis of variance table obtained from a stepwise regression analysis on data for a sample of 19 women over the age of 60 is shown.

The following "shorthand" summarizes incremental regression sum of squares explained as each of three predictors are added to the model, step by step:

Step 1- $\quad\left(\mathbf{X}_{3}\right)$ says: X_{3} is fit
Step 2 - $\quad\left(\mathbf{X}_{2} \mid \mathbf{X}_{3}\right)$ says: X_{2} is added to the model that already contains X_{3}.
Step 3-($\left.\mathbf{X}_{1} \mid \mathbf{X}_{2}, \mathbf{X}_{3}\right)$ says: X_{1} is added to the model that already contains X_{3} and X_{2}.
Source \quad DF \quad Sum of Squares
Regression $\left(\mathrm{X}_{3}\right) \quad 11058.628=$ Regression SSQ $\left(\mathrm{X}_{3}\right)$

$$
\begin{aligned}
\left(\mathrm{X}_{2} \mid \mathrm{X}_{3}\right) \quad 1 \quad 183.743 & =\text { "Extra regression } \mathrm{SSQ} "=\Delta \text { regression } \mathrm{SSQ} \rightarrow \\
& =\text { Regression } \mathrm{SSQ}\left(\mathrm{X}_{2}, \mathrm{X}_{3}\right)-\text { Regression } \mathrm{SSQ}\left(\mathrm{X}_{3}\right) \\
& \\
\left(\mathrm{X}_{1} \mid \mathrm{X}_{2}, \mathrm{X}_{3}\right) \quad 1 \quad 37.982 & =\text { "Extra regression } \mathrm{SSQ} "=\Delta \text { regression SSQ } \rightarrow \\
& =\text { Regression } \mathrm{SSQ}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right) \text { - Regression SSQ }\left(\mathrm{X}_{2}, \mathrm{X}_{3}\right)
\end{aligned}
$$

Residual
$15363.300=$ Residual SSQ $\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}\right)$
Total, corrected

$$
18 \quad 1643.653=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{Y}_{\mathrm{i}}-\overline{\mathrm{Y}}\right)^{2}
$$

Tip - It is possible to extract the 3 analysis of variance tables, one for each step, because the total corrected sum of squares is constant. Note how it is possible to obtain the residual sum of square values in two ways!

Step 1 Model

$\mathrm{Y}=\beta_{0}+\beta_{1} \mathrm{X}_{3}+$ error

Source	DF	Sum of Squares
Regression on X_{3}	1	$\mathbf{1 0 5 8 . 6 2 8}$
Residual	17	$\mathbf{5 8 5 . 0 2 5}=(\mathbf{1 6 4 3 . 6 5 3}-\mathbf{1 0 5 8 . 6 2 8})=(\mathbf{3 6 3 . 3 0 0}+\mathbf{3 7 . 9 8 2}+\mathbf{1 8 3 . 7 4 3})$
Total, corrected	18	$1643.653=\sum\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}$ fixed

Step 2 Model

$Y=\beta_{0}+\beta_{1} X_{3}+\beta_{2} X_{2}+$ error

Source	DF	Sum of Squares
Regression on $\mathrm{X}_{3}, \mathrm{X}_{2}$	2	$\mathbf{1 2 4 2 . 3 7 1}=(\mathbf{1 0 5 8 . 6 2 8}+\mathbf{1 8 3 . 7 4 3})$
Residual	16	$401.282=(\mathbf{1 6 4 3 . 6 5 3}-\mathbf{1 2 4 2 . 3 7 1})=(\mathbf{3 6 3 . 3 0 0}+\mathbf{3 7 . 9 8 2})$
Total, corrected	18	$1643.653=\sum\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}$ fixed

Step 3 Model

$Y=\beta_{0}+\beta_{1} X_{3}+\beta_{2} X_{2}+\beta_{3} X_{1}+$ error

Source	DF	Sum of Squares
Regression on $X_{3}, \mathrm{X}_{2}, \mathrm{X}_{1}$	3	$\mathbf{1 2 8 0 . 3 5 3 = (\mathbf { 1 0 5 8 . 6 2 8 } + \mathbf { 1 8 3 . 7 4 3 } + \mathbf { 3 7 . 9 8 2 })}$
Residual	15	$\mathbf{3 6 3 . 3 0 0}=(\mathbf{1 6 4 3 . 6 5 3}-\mathbf{1 2 8 0 . 3 5 3})=\mathbf{(3 6 3 . 3 0 0})$
Total, corrected	18	$1643.653=\sum\left(y_{i}-\overline{\mathrm{y}}\right)^{2}$ fixed

